Skip to main content
Tugas Programming
  1. Belajar/
  2. Data Science/
  3. NumPy: Dasar-dasar Komputasi Numerik/

Tugas Programming

314 words·6 mins· loading · loading ·
Rumah Coding
Author
Rumah Coding
Tempatnya belajar coding
Table of Contents
NumPy Dasar-dasar Komputasi Numerik - This article is part of a series.
Part 12: This Article

1. Manipulasi Array Dasar
#

Buatlah fungsi Python yang menerima array NumPy satu dimensi dan mengganti setiap elemen ganjil dengan nilai kuadratnya, sedangkan elemen genap dikalikan dengan 2.

Contoh:

# Input
arr = np.array([1, 2, 3, 4, 5])

# Output
modified_array(arr)
# Output yang diharapkan:
# array([1, 4, 9, 8, 25])
Mudah

2. Matriks Identitas
#

Buatlah fungsi Python yang menghasilkan matriks identitas berukuran n x n menggunakan NumPy.

Contoh:

# Input
n = 3

# Output
identity_matrix(n)
# Output yang diharapkan:
# array([[1., 0., 0.],
#        [0., 1., 0.],
#        [0., 0., 1.]])
Mudah

3. Pengindeksan dan Slicing
#

Buatlah fungsi Python yang menerima matriks dua dimensi dan mengembalikan bagian tengahnya (tanpa baris pertama dan terakhir serta kolom pertama dan terakhir).

Contoh:

# Input
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])

# Output
middle_slice(matrix)
# Output yang diharapkan:
# array([[5]])
Sedang

4. Pemrosesan Statistik
#

Buatlah fungsi Python yang menerima array satu dimensi dan mengembalikan nilai-nilai statistik dasar seperti rata-rata, median, dan standar deviasi.

Contoh:

# Input
arr = np.array([10, 20, 30, 40, 50])

# Output
basic_statistics(arr)
# Output yang diharapkan:
# {'Mean': 30.0, 'Median': 30.0, 'Standard Deviation': 15.8114}
Sedang

5. Prediksi Keuangan dengan Regresi
#

Buatlah fungsi Python yang menerima dua array NumPy, satu sebagai variabel independen (X) dan yang lain sebagai variabel dependen (Y), dan mengembalikan model regresi linear sederhana.

Contoh:

# Input
X = np.array([1, 2, 3, 4, 5])
Y = np.array([2, 4, 5, 4, 5])

# Output
linear_regression_model(X, Y)
# Output yang diharapkan:
# {'Slope': 0.3, 'Intercept': 2.4}
Sulit

6. Pemrosesan Citra Medis
#

Buatlah fungsi Python yang menerima citra medis (array NumPy) dan mengaplikasikan filter rata-rata (3x3) pada citra tersebut.

Contoh:

# Input
medical_image = np.array([[10, 20, 30],
                         [40, 50, 60],
                         [70, 80, 90]])

# Output
apply_average_filter(medical_image)
# Output yang diharapkan:
# array([[33, 44, 55],
#        [66, 77, 88],
#        [99, 110, 121]])
Sulit
NumPy Dasar-dasar Komputasi Numerik - This article is part of a series.
Part 12: This Article

comments powered by Disqus